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World Maps on the August Epicycloidal Con- 
formal Projection 

Erwin Sch.niid 

ABSTRACT. Mapping equations and their inverses are developed i n  simplified 
form for the August t wo-cusped epicycloidal conformal projection and for the 
Lagrange family of confornial projections bounded by circular arcs. 

1. INTRODUCTION 

F. August (1873) developed the theory of a con- 
formal projection of the whole sphere within a 
two-cusped epicycloid. The National Geodetic 
Survey (N.0.S.-N.O.A.A.) was recently requested 
b y  the S 111 i t  h sa BII ian Ins tit u t ion t ) cc ) r n  pu te and 
plot various skewed aspects of a map of the world 
on this projection; the following pages are a result 
of this effort. Aside from the language barrier and 
the limited accessibility of the cited reference there 
are other valid justifications for another and, in  
some respects, supplementary presentation of the 
subject. Probably the principal of these reasons is 
to shift the emphasis from the geometrical construc- 
tion of the grid, which i n  those days was of primary 
interest to  the cartographer, t o  the explicit formula- 
tion of the  analytical mapping equations which 
today's computer-programmer needs to produce a 
map of not on ly  the grid but also of the  outlines of 
continents, boundaries of countries, etc. Althciugli 
August's presentation is complete and rigorous, a 
cartographer not familiar witti Complex Function 
Theory would have some difficulty in  deriving the 
necessary programmable mapping equations with 
(4, A),  i.e., latitude and longitude input from the 
cited reference. As a matter of fact, it is possible 
to develop these formulas by applying analytical 
geometry to August's geometrical construction 
presented in section 10. 

August (1873) interchanges the X and Y axes of 
the complex plane, presumably to conform wi th  
tlie standard practice i n  German cartography. 
This practice has certain, advantages i n  that azi- 
muth, which is reckoned clockwise, can be identi- 
fied with inclination in  the formulas of analytical 
geometry and trigonometry. However, this conven- 
t ion  has not been generally adopted in  the United 

States; here we retain the standard practice in 
both function theory and cartography of designating 
the X-axis as the axis of abscissas. The distinction is 
not entirely trivial because occasional changes in 
sign are produced in going from one system t o  the 
other. 

August begins his deinonstratiun by developing 
the mapping equations (as they are called in the 
theory of functions of a complex variable) of the 
meridional aspect of the stereographic projection 
of the unit sphere onto ttie cwmplex plane. For 
cartographic purposes this complex plane can 
equally well be interpreted as the lilane sheet in 
which the niap is drawn. He then gives. without 
proof, the transformation on tlir coordinates of the 
stereographic projection that produce the ordinary 
Lagrange conformal project ion of the sphere within 
a unit circle. In this projection the circumference of 
the circle represents both halves of the meridian of 
longitude 180" with respect to the central meridian. 
which is a diameter of the circle. A two-cusped 
epicycloid is generated by rolling a circle with 
radius= 1/2 on the circumference of the unit circle. 
By the methods of analytical geometry tlie equation 
of the epicycloid is then found i n  terms of the x ,  v 
coordinates of the circle, thus mapping the 180" 
meridian onto the epicycloid (fig. 1). According to  
the principle of analytical continuation these same 
equations therefore map the interior of ttie circle 
into the interior of the epicycloid conformally, with 
the exception only of the singular points of the 
transformation. 

2. THE STEREOGRAPHIC PROJECTION 

This well-known projection is the only truly 
perspective view of the sphere that is also con- 
formal, and is of fundaniental importance i n  coni- 
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plex function theory. The development of tlie cor- 
responding mapping equations onto the plane of 
ttie complex variable z = x + iy can be found in 
any textbook on the subject. For the meridional 
aspect, i.e., with the perspective center on the 
equator and the plane of projection parallel to the 
polar axis, these equations are: 

sin A cos 4 
1 + cos A cos 4 

sin 4 
'= 1 + cos A cos 4 ' 

where x ,  y are tlie rectangular components of the 
complex number z = x + iy and 4, A are latitude 
and longitude on the sphere. The equations are 
scaled arbitrarily so that ttie points within the 
unit  circle represent a un i t  hemisphere centered 
about a point of the equator, tlie origin of the 
x, y plane, with spherical coordinates 4= A =  0. 
The points on the other half of the sphere map intv 
the exterior of the unit  circle. 

and A ,  i.e.. to 
obtain the inverse of the transformation (1). divide 
tlie first equation by the secnnd t o  obtain 

To solve these equations for 

x sin A 

y tan 4 
-=- 

In addition to enabling one to find the spherical 
coordinates of a point from given x, y coordinates 
on the map, (3) are also the equations i n  tlie mapping 
plane of the parallels and meridians of ttie sphere, 
respectively. From the form of the equations,, it is 
apparent that both sets of curves are circles, with 
centers on the coordinate axes. It is a characteristic 
property of this projection that all circles on the 
sphere map into circles i n  the plane. 

3. THE CAUCHY-RIEMANN EQUATIONS 

In  complex function theory the criterion for the 
conformality of a mapping is basic for the definition 
of analytical functions and is, from a formalistic 
standpoint at any rate, considerably less compli- 
cated than the corresponding concept in differential 
geometry. In the text books on complex variables 
it is shown that an analytic function 

of the complex variable z must satisfy the Cauchy- 
Riemann equations 

x sin 4 
Y cos 4 

or sin A =- . Substituting cos A =  gl - sin2 A 

= Vp cos2 4 - x2 sin2 4 

and conversely. 
Translated into cartographic terms, this means 

that if a conformal projection such as the stereo- 
graphic is given in terms of Cartesian coordinates 
x, y, then a projection with coordinates X, Y, where 
the latter are each functions of x and y, will be con- 
formal if, and only if, 

Y cos 4 in the second eq (1) re- 

sults in 

Rationalizing this equation and substituting 
(y2 - y2 sinZ$) for y2 cos2$ results ultimately in 

ay 
ax- 

This test is not immediately applicable to the 
stereographic projection as given in (1) since the 
x and y coordinates are given there as functions of 
4 and A which are not, as such, Cartesian cci- 

The niodification necessary to  make the conditions 
(6) applicable to a projection defined i n  terms of 
4 and A is shown in section 6. 

ysin A 
Similarly, by using tan 4=- X (2). 4 

can be eliminated from either ,)f (1). The combined .ordinates Of a Conformal projection of ttie sphere. 
(3), is then required inverse of 

meridional stereographic eq (1). 

2Y 
1 + x ' +  y2 

2x 
1 - x' - Y2 

sin 4 = 
4. THE LAGRANGE PROJECTIONS 

Lagrange, as cited by Scheffers (1902), set him- 
self the problem of finding all conformal projec- 

(3) 
tan A = 
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tions i n  which the meridians and parallels are 
arcs of circles. For the meridional aspect, it seems 
a reasonable presumption that the mutually orthog- 
onal family of circles used to represent parallels 
and meridians arising from the definition of the 
stereographic projection, i.e., the circles (3) will 
again serve as the grid but with different designa- 
tions. Scheffers shows that this family is indeed a 
necessary consequence of the statement of the 
problem. Consequently the Lagrangian projections 
can he thought of as a generalization of the stereo- 
graphic meridional projection with the meridans A 
of this latter projection relabeled as nA where n 
is any positive number, including fractions. For 
n= 2, for instance, the two halves uf the circum- 
ference of the unit  circle become the 180" meridians 
E and W respectively, so that the whole sphere is 
mapped within the circle. This particular case is 
usually designated as the Lagrange Projection and, 
as such, credited to J. H. Lambert by some writers. 
For other values of 11 i t  is apparent that any portion 
of the sphere symmetrical to a central meridian 
or the whole surface of the sphere will be mapped 
between t w o  specified arcs uf circles. There is no  
loss of generality in specifying that the circles 
intersect on the y axis at uni t  distance from the 
origin, these t w o  points being the poles i n  the 
projection. 

Having specified that we want t u  make the sub- 

stitution A *  = - for A i n  equations (l), the only re- 

maining condition tu be satisfied is t o  determine a 
corresponding transformation 4* on I$ t o  produce a 
conformal projection. To put it in  geometrical 
terms, the parallel circles of the stereographic 
projectiori must remain parallels but their spacing 
will be different, the cirthogonality uf the two fam- 
ilies of circles being necessary but not sufficient for 
confurmality. We shall incidentally prove the 

latitude transftirniation sin 4 *  = tan - for the case 

n = 2. which is usually given i n  the textbooks with- 
o u t  proof. 

. 

A 
n 

4 
2 

In analytical terms, our problem is: Given 
eq (l), i n  which x = x ( A ,  +), y =  y ( A ,  I$), then the 
family of  Lagrange projections with parameter 11 

is 

Is there a function 4 *  of 4 alone such that eq 
(7) satisfies the Cauchy Riemann conditions (6)? 

I 8) 

ax here - is aX ax a h  
a h  a h  a h * '  

_-.-. 
dA 

I n  the first equation, 7 - 
obtained by differentiating the first cif eq (1) with 
respect to A. The result i s  

ax cos 4 (COS A + cos 4) -= 
ah (1 + cos A cos 4)2 

From the relation A =  nh* used in  (7) we have 

ah * n. Hence 
a h  -= 

Similarly 7 a Y  = ay - *. With dY obtained by dlf- 
ad ad ad* 

ferentiating the second of eq (1). 

Equating (9) and (10) we have the necessary con- 
dition to be satisfied for confor:iiality. Le., 

(11) 

where the partial derivative is equal to the total de- 
rivative because 4* was pcistulated as independent 
of A. The condition for confortnality is therefore the 
ordinary differential equation 

1 
d +* = - SIX sr, d 4 

I1 

with the solution 
.,. 

which can be verified by differentiation. 
Proceeding in similar fashion wi th  the  second of 

the condition (8) it is seen to be satisfied also by 
the relation (11). The relation is therefore sufficient 
as well as necessary. and we hcve provt:d that the  

1 A 
substitution of n 111 (sec 4 + tan 4) for 4 and ; 
for A in  the stereographic fortnula (1) prnduces 
the conformal General Lagrange Projecthn with 
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parameter n. We shall write (12) as tions of 4 in  (1) into functions of p,  we use the 
Gudermannian transforniations (Dwight 1934): 

El. 
n 4*- 

where p = In (sec I#I + tan 4) is designated in cartog- 
raphy as isometric latitude because, as demon- 
strated in texts on differential geometry. p and A 
are isometric or isothermal parameters on the 
sphere. The latitude function p = const. and 
A = const. plotted in an x ,  y plane as lines y =  const. 
and n = const., respectively, produce the conformal 
Mercator projection. Alternative expressions for 
p sometimes used for computational or analytical 
purposes are: 

p = -  I n  I 2 ] - s i n $  

These can be derived frnm p = In (sec 4 + tan 4) 
by straightforward trigonometric forniulas. 

The Cauchy-Riemann equatinns are the basis 
for the theorem in complex variable theory that 
every confnrmal mapping i n  the coniplex plane is 
an analytic function of any other cnnfornial mapping. 
Which mapping is considered the basic one is a 
matter of choice. Because of its great antiquity 
and simple geonietric construction, this distinctiori 
is commonly accorded the stereographic projec- 
tion. However, the fact that the geographic grid 
of the sphere coincides with the x ,  y lines of the 
mapping plane in the Mercator projection makes it 
seem likely that, on the whole, the totality of con- 
formal projections can be expressed most con- 
veniently and cnmpactly i n  ternis of the complex 
variable z = A + ip. 

From the definition of n, i t  is evident that fnr 
n = 1 eq (7) rearesent the stereographic projec- 

tion, since A * = - = A .  From (121 and (131, 4* 
=I=.. Hence. eq (7) express the stereographic 
X and Y coordinates in terms of A and p 

A 
n 

n 

To deduce the form of the function on the right 
of eq (15) from the left, which we will assunie ex- 
pressed in terms of 4 and A as in  (1).  we note first 
that no change is necessary i n  the functions of 
A involved. To transform the trigc.)nonietric func- 

sin 4 = tanh p 
(16) 

cos 4 = llcosh p. 

The result of these substitutions into (1) gives the 
desired form of the stereographic as a function of 
A a n d p  

sin A 
cosh p + cos A 

(17) 
sinh p 

cosh p + cos A' 

From (7) and (13), it is also evident that to pass 
from the stereographic to the general Lagrange 
projection all that is necessary is to divide both 
A and p in (17) by it. Thus the Lagrange projection is 

A sin - 
n 

c1 A cosh - + COS - 
n n 

(18) 

for all values of n.. 

5. INVERSE OF THE GENERAL LAGRANGE 
PROJECTION 

From (18). by division 

A sin - X n 

EL sinh - Y 
n 

-=- (19) 

A and cos - Y n 

X sinhEl- 
n A 

n Hence sin - = 

Substituting these quantities into the second of eq 
(18) and proceeding in a manner similar to tlJat used 
to develop (3) results in  

EL 
n - 2~ sinti cosh -- 
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CL For Y2 cosh' E'L write Y2 + Y2 sinh' - and we have 
n. I 1  

P I.1. (X' + Y2 + 1) sinh' E =  2Y s inh  - cash - n. I t  n 

2Y tanh E = 
I 1  X'+YZ+ 1 

Similarly. by solving (19) for sin11 E and substi- 

tuting for cc.ish - i n  the first of eq (181, an expression 

A for tan - is obtained. The combined results are 

It 

El. 
I1 

n 
the required inverse of eq (18) 

(20) 

It is again apparent that for constant h or p,  the 
inverse eq (20) are the equations of the meridians 
and parallels. respectively, and that they are all 
circles with centers on the cciordinate axes as was 
specified i n  the statement of the problem. 

In particular, for the Stereographic projection 
(IL = 1) the eq (20) are. as before in  eq (31, 

tan h 

2Y 
l+X'+Y2 tanh p = sin 4 = 

and for the cc.ininion Lagrange projection (n = 2) 

I2h tan - 

(22) 
4-  2Y tanh = tan- - 1 2  2 l+X?+Y? 

The relation sin 4 = tanh p i n  (21) is from (16) 
and cati be demonstrated as follows. From the 
second of eq (14), it  follows that 

1 + sin 4 
1 - sin 4 

(?Y?P = 

The right side of this equation equals tanh p by 

From the first of eq (14) 
definition of the hyperbolic tangent. 

P 
2 Solving this for tan - leads to tlie relation tanh - 

= tan - in (22). Comparison of' (21) and (22) indicates 

the effect of reducing p to i n  going from the 

stereographic to the ordinary Lagrange projection 
directly in terms of the latitude 4. It is the substitu- 

tion of tan - for s in  4 whicli Acgust tacitly assumes 

in both his geometrical construction and in his 
analytical treatment of the ordinary Lagrange pro- 
jection. For the general Lagrange projection (18). 
no such simple relation i n  t e r m  of elementary 
functions of 4 is apparent. However. in tctrnis of y. 
the transformation is quite general and torrnalistic- 
ally simple. 

4 
2 

4 
2 

2 

4 
2 

6. THE CAUCHY-RIEMANN EQUATIQNS IN 
TERMS OF 4, h 

We have used the theorem from complex variable 
analysis that, if mapping equations % ( A .  p )  and 
y(h, p )  are expressed in terms of tlie isonietric 
variables h and p and satisfy the Cauchy-Riemann 
equations 

ax - ay I--- ah a p  

ax ay 
a p  ah' 
-=-- 

then the mapping transfortnation will be conformal. 
arid conversely. 

a p  and (13) -= sec 4, we have by substitution of  
a4 

these quantities i n  (23) 

(24.) and sdving this for sin 4 we have 
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as a set of Cauchy-Riemann conditions directly in  
terms of 4 and A. In cartography, mapping 
equations are generally expressed as functions of 
4 and A, and the form (24) is therefore directly 
applicable as a test for conformality of the trans- 
formation or. as the case may be, the ccm-iition tci be 
satisfied to niake the mapping confiirinal. For ex- 
ample. differentiating (1) with respect to 4 and A. 
the stereographic projection satisfies both conditions 
(24) and is therefore ccmfairmal. On the other hand, 
for the Satison Sinusoidal projection 

X =  A COS 4 
L=4 

the first of conditions (24) is satisfied but not the 
second, so this map is not ccmformal; i t  is in fact 
area-equivalent. 

Y 

7. PROJECTION OF THE SPHERE WITHIN A 
TWO-CUSPED EPICYCLOID 

The epicycloid in figure 1 is a curve traced by a 
point U of a circle with radius 1/2 rolling on the unit 
circle centered at the origin of the x ,  y coordinate 
system. To make the north poles of the two  projec- 
ticins coincide, August specifies that the point of the 
smaller circle that traces the curve shall be the 
point of contact of the two circles when the center 
of this smaller circle lies on the positive y axis. 
With no slippage present the hicus U of the specified 
point of the rolling circle will be such that the arc 
NP on the stationary un i t  circle equals the arc PU 
on the smaller circle. Consequently L PCU= 
2(L NOP) and L UCD=2(L POX). Projecting OU 
on the coordinate axes, the coordinates ( x t f ,  y t f )  of 
U are 

FIGURE l.-Two-cusped epicycloid generated by a fixed pitint U i m  the circumference of a circle riding on the exterior of the unit circle. 
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3 1 
2 xf l  = e + - cos 3 8  

(25) 
1 

ya= - sin 0 + - sin 30. 

If we now interpret tlie plane of figure 1 as tlie ci.ini- 

plex plane, then tlie complex value u of U is x s  + iy, 
or 

I ;  2 

1 
(cos 0 + i sin 0)+ 3 (ci.is 3 0  + i sin 3 0 )  u= 

2 

or, with DeMoivre’s theorem. 

(26) 

Furthermore, tlie point P 1.m ttie unit circle has the 
complex value />=ele SO Iliat (26) becomes 

1 
u = ,  (3/1+/,:’) (27) 

L 

which establishes a functional relation or  mapping 
between tlie points of tlie unit  circle and of the epi- 
cycloid. If we now interpret all points of tlie un i t  
c irc le .  h l t h  0 1 1  the c ircui i i ference  and in  t h e  inte- 
rior, as piints of the ordinary Lagrange projection 
then, by the principle of analytic continuation. ttie 
relation (27) maps all points of tlie sphere (except 
singular points) from tlie unit  circle i n t o  the region 
of tlie plane bounded by tlie epicycloid. Since, as we 
have shown, [lie Lagrange projection is conformal 
and, by (27), IL is an analytic function of p (i.e., the 
transfiirmaticin (27) satisfies the Cauchy-Riemann 
conditions), tlie August projection is therefore also 
cc in fc ir mal. 

Designating tlie abscissas and ordinates of the 
Lagrangian points p as x and y respectively arid of 
the ctirresponding August points u as X and Y. eq 
(27) will read 

1 x+ iY= 2 [ 3 ( x +  iy) + ( x +  iy):’] 

o r ,  by using the binomial theorem 

X + i Y = X  ( 3 + x 2 - 3 y ? ) + i  r ( 3 + 3 x 2 - y 2 ) .  
(28) 2 .. 2 

Since the comglex number on the left of (28) is 
equal to that on the right. we must have 

y 2  ( 3  + 3x2 - y‘))  L (29) 

7 

which are the equations for the August two-cusped 
epicycloidal projection, where the auxiliary vari- 
ables x ,  y are the coordinates of the ordinary Ida- 
grange projection computed from (18) with n = 2. 

or from (1) by replacing A with -. A sin with tan 4 -. 2 2 

and cos C#J with 1 - tan? - 

As August points out, i f lhe  function p i n  tht: f a r -  
mulas is replaced by the corresponding isometric 
parameter p(e)  on the ellipsoid. i.e., if we substitute 
for El: the quantity 

where e is the eccentricity of the meridian ellipse. 
the ellipsoid will be mapped with the same formulas. 
However. further modifications are necessary for 
skewed (oblique) aspects of a projection because 
on an ellipsoid of revolution. unlike the sphere. 
the geographic poles occupy a unique position c:n 
the surface. 

8. INVERSION OF THE EPICYCI,OIDAI. 
COORDINATES 

The problem of finding equivalent gecigraphlc 
coordinates (4, A )  on the sphere from given epicy- 
cloidal ccic.irdinates X and 1’ as cliniputed l‘roni (29). 
requires more sophisticated formulas from complex 
variable theory than have been used in the preceding 
sections. To make the argument easier for students 
to follow, we adopt a more conventional notatio3 
in this section. Thus, in  (27) u designates the  coni- 
plex variable defining the epiqcloidal point and p 
the corresponding Lagrange point. We shall now 
use tlie equivalent relation 

where u, v are tlie X ,  Y of the previcius section and 
x ,  y are unchanged. ‘The transformation (30)  is a 
mapping of the z-plane onto 11iv w-plane. 

The inverse relation, mitpping ttie iu-plane back 
ti:) thez-plane can be effected b y  reversing the srritss. 
i.e.. by expressing z as an infinite series i i i  powers 
1 . J  tlie complex variable tu. ur hy iterative methods. 
The resulting processes. 1iowevt.r. are cunibrrsonie 
and imprecise because of s low conver;l;ence in  
smie  regions of tlie confipuralion. A rigorous solu- 
tion for z in  terms of iu i n  c.liised form caii be found 
by the f~ill~iwing device: 

‘The solutic.iii of tlie cubic equatioii 



which is the functional relation (30)' is, by use of 
Cardan's formula for complex variables 

(31) 
z = p + q  w i t l i p =  ( i u + V i ? T l ) l / 3  

q =  ( ~ - G G - i p 3  

(See p. 339. Townsend 1930). 
The ecliiation has two further rc.iots, but these 

represent branches of the function z which are not 
pertinent to the present problem. Let 

w =  sinh 37, 
(32) 

where 37=35+3ir). 

Then 
sinh 37 = sinh 36 cos 37 + i cosh 3 t  sin 37 (33) 

so that. with the relation cosh'r = 1 + sinh%. 

Froni (31), therefore, 

= 2 ( sinh 6 cos r) + i cosh 6 sin r ) )  

(34) 

The various functicmal relations for hyperbolic ancl 
exponential functions can all be found, for example, 
i n  Dwight (1934). To find 6 and r)  we 
and (33) the si ni ti It anec )us equat io tis 

u= sinh 35cos3r) [ u = costi 36 sin 3r) 

Squaring these 

i i 2 =  sinh2 35 cos2 3r) 

v2 = cosh2 36 sin* 37)= (1 + sinh' 36) 

have from (32) 

(35) 

sin23r) 

) sin2 3r) = ( 1 +  U2 

1 - sin* 37) 
Hence 

sinJ 3 q - ( 1 f v 2 + u * )  sin' 3 r ) + v 2 = 0 .  

a quadratic ecluatic.m i n  sin? 377 the solution for which 
I S  

where the minus sign before the radical is chosen to 
keep sin2 3 s  i n  the range 0 C sin'3r) c 1. Since there 
is coniplete synimetry i n  the f(.)ur quadrants of the 
map. no generality is lost by assuming u, II, and 
hence, 5.  r ) ,  positive. Estract the positive square 
rcwt for sin 3q. froni which follows 

(37) 

by ecl(35). 
From sin 37 and cosh 35 obtain 37.35 and. hence. 

7 and 6.  Froni (34) the Lagrange coordinates corre- 
sponding tis the given epicycloidal cc.ic:irdinates 11, u 
are then 

V cosh 36= - 
sin 3r) 

X = 2 sinh 6 cos r )  

Y = 2 cosh 6 sin r)  
(38) 

which, with (22). give the soluticm for 4 and A 

h 2 x  
2 l - X Z - Y *  

2Y 
2 1 + X * + Y 2  

tan - = 

Since, frc.im (38) 

X* + Y* = 4(sinh2 6 cos2 r)  + cosh' 5 sin* r ) )  

= 4(cosh' 6 - cos2 r ) )  

the solution (22) can be written directly i n  
6 and r)  as 

h sinh 6 cos r)  

2 1/4 - (cash' - cos'2q ) 
tan - = 

terms of 

(39) 

9. NUMERICAL EXAMPLES 

Use (.if the formulas presented here will be illus- 
trated by sonic nunierical examples computed on 
a IO-digit electronic desk calculator capable iif coni- 
puling trigc.monietric, hyperbolic. and espi.mential 
functions ancl the cc.irrespcinding inverse functions. 
The numbers i n  parentheses refer ti.) the pertinent 
equations i n  the text.  

Es. 1. The stereographic projection. 
Spherical cc.)ord i n at es 
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Latitute C#.J = +50° (north) 
Lmgitude A = + 100" (east of central 
ni e rid i a n) 

sin = 0.76604 44431 
cos C#.J= 0.64278 76097 
sin A = 0.98480 77530 
cos A = 0.17364 81 777 

(0.98480 77530) (0.64278 76097) 
= 0.71255 70540 1 + (-0.17364 81777) (0.64278 76097) 

= 0.86229 2591 1. 
.76604 44431 I '= I . +  (-0.17364 81777) (0.64278 76097) 

For the inverse 

Z(0.86229 25911) 
1 + (0.71255 70540)'+ (0.86229 25911)' 

2 (0.71 255 70540) 

= 0.76604 444.31 sin C#.J= 

tan A = 1 - (0.71225 70540)2- (0.86229 25911)2 =-5.6712 81819 
(3) 

arcsin c$ = 5O"OO' OYOOOOO 
arctan A = 1OO"OO' OYOOOOO 

Note that x2 + y' > 1 since A > 90". For all such points add 180" to the principel value nf arctan A. 

(14) p = In tan (45"+ 25") = 1.0106 83189 

= 0.71255 70540 0.98480 77530 
1.5557 23827+ (-0.17364 81777) 

= 0.86229 2591 I 1.1917 53593 \'= 1.5557 23827+ (-0.17364. 81777) 

as above. 

Ex. 2. The Ordinary Lagrange Projection. 
A 
2 2 2  

' Using(l8) with n = 2, -=50", E=_1 (1.0106 83189) froni example 1, 

A 
2 

2 

2 

sin -= 0.76604 44431 

cos i.= 0.64278 76097 

sinli E =  0.52712 60889 

cedi E =  1.1304 25545 2 

(18) 
= 0.43200 92263 

= 0.29727 16099. 

0.76604 54.431 
1.1304 2 5 5 4  + 0.64278 76097 (I: 0.52712 60889 

- 1.1304 25545 + 0.64278 76097 

9 



A 
2 2 

Using the stereographic eq (1) wit'h A=-=50' and substituting tan $= tan 25'=0.46630 76582 for 

sin 4 and,,hence,0.88462 26132 for COS 4, gives 

(36) 

(0.76604 44431 ) '(0.88462 26132) 
1 + (0.64278 76097) (0.88462 26132) 

0.46630 76582 
1+ (0.64278 76097) (0.88462 26132) 

= o.43200 92262 X =  

= 0.29727 16999. y =  

The inverse, from (22) 

= 1.1917 53593 A 2(0.43200 92263) . tan - = 
2 1 - (0.43200 92263)'- (0.29727 16999)' 

= 0.4630 76582 4-  2(0.29727 16999) tan - - 
2 1+ (0.43200 92263)'+ (0.29727 16999)' 

A = 100'00' O."OOOO 
A 
2 arctan - = 50'00' O."OOOO 

arctan !?! = 25'00' O."OOOO 4 = 50'00' O."OOOO 2 

E x .  3. The Epicycloidal Projection. . 
The Lagrange coordinates from example 2 are 

x = 0.43200 92263 

y= 0.29727 16999 

From (29) 

0.43200 92263 (3+ (0.43200 92263)'-3(0.29727 1699912) =0.63106 19229 [X = 2 

0*29727 16999 (3+ 3(0.43200 92263)'- (0.29727 16999)') = 0.51599 31360 2 

The Inverse 

sanie as X, Y above I u= 0.63106 19229 

v =  0.51599 31360 

1 + ZJ' + u' = 1.6644 88067' 

1 
2 

sin' 37) =- (1.6644 88067 - (1.6644 88067)'-4(51599 31360)' = 0.17926 53088 

sin 37) = 0.42339 73416 

7) = 0.14573 07016 radians 
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(3 7) 

(34) 

0.51599 31360 
0.42339 73415 

cosh 35 = = 1.2186 97155 

{ =  0.21662 06631- 

x = 2 sirili t cos r)  = 2(0.21831 87789) (0.98940 00608) 

= 0.43200 92262 

y =  2cost1~sir1r)=2(1.0235 54145) (0.14521 54246) 

= 0.29727 16999 

The Lagrange coordinaies are reproduced, and an inversion of these as in e x ~ ~ i p l e  2 will produce the 
geographic coordinates or, directly with (39). 

(39) 

= 1.1917 53591 = arctaii 50' 
A (0.21831 87789) (0.98940 00608) 
2 tan - = 

0.25- ( (  1.0235 54145)'- (0.98940 00608)') 

(1.0235 54145) (0.1.4521 54246). 
0.25+ ((1.0235 54145)'- (0.98940 00608)?) = 0.46630 76.581 = arct an 25" 2 

Ex. 4. 
Assunie a niap is to be constructed to include, within a unit  circle, all of the Egrasian contineilt. Afric-a 

and Australia. (See fig. 2.) The longitudinal extent is 220". from 30"W to 190"E, with a cextral meridian 80%. 
The circuniference of tlie circle that represents the meridians 30" i n  the stereographic will IIIIW represerli 

The General Lagrange Projection. 

tlie meridians ? 110" SI') that n = - 110 = - 11 For tlie point A 100". 4=SO: - A = -900" - = (81 ir, a ~ i d  = 

a 
90 9 '  n 11 

(1.0106 83189) = 0.82692 26090 11 

A 
sin ; = 0.98982 144.19 

cos - A = 0.14231 48383 
n 

sinh E = 0.92M3 94512 
n 

cosh E = 1.3618 32699 n 

(1.8) 

0.98982 14419 
1.3618 32699 + 0.14231 48383 = 0.65806 14053 X =  

94512 = 0.61459 3601 1 
y= 1.5041 47537 

11 



FIGURE 2. -The Eurasian Cimtinent and Africa iin a Lagrange priijectinn. 

The inverse 

= 6.9551 52771 9 2(0.65806 14053) 
tan - A =  11 

9 tanh - p= 11 

1-  (0.65806 1405)'- (0.61459 36011)' 

= 0.67882 01313 2 (0.6 1459 3601 1 ) 
1+ (0.65806 14053)?+ (0.61459 36011)' 

(20) 

A = 100"OO' 0. "0( l~  9 - A=81."81818182 11 

p= 1.0106 83189 9 - p=O.8269226089 11 

tanh p=0.76604 44431=sin C#J 

+= 50"00'0."0000 
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ep= 2.7474 77419 = tan 45" + - ; 45" + f! = 70"00'0.''00OO ( 3 2 

10. GEOMETRIC CONSTRUCTION OF POINTS 
ON THE EPICYCLOIDAL MAP 

A i t  git s t sI1ows t he fi ,111 ,wi tig geu tile tric co tis t ruc- 
tion of a point U of his projection with given 4 arid A 

frcini tlie defining ecl (27). u= - (3p  + p i ' ) ,  using the 

complex iiumber I N  vector p ,  the image of tlie ordi- 
nary Lagrange prcijectiun ( n =  2 ) ,  as an interinedi- 
atc cimstruction. Ftir the sake of ccmvenience he 
actually plots the value 2u=3p+p3 which iiierely 
represents a doubling of the scale i n  ecl (27). The 

1 
2 

Lagrange point P i n  figure 3 i n  turn is plotted as a 
point of the stereographic projec.tion with longitude 
A 4 - and latitude 4* such that sit1 dZk= tan 7.  The con- 2 2 
structic.m of the stereographic grid itself will be as- 
sumed as known sirice i t  can bi: found i n  niany tests. 
e.%.. Deetz and Adanis (1945). p. 46. 

Construct a unit circle with perpendicwlar diam- 
eters NS and AA'. The arc- N A ' B  is made equal t i i  

A. chord BN intersects A'A at (1. With (1 as center. 
and radius CN. draw the p i w t i i i i i  of the circular arc 

S 

3 P  
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lying inside the unit circle.'This arc is the meridian 
A of the Lagrange image P. Construct arc A ' D = 4  
and intersect chord A'D with SN at E. With center 
E draw a circular arc cutting the unit circle orthog- 
onally at F and F'. (This can be accomplished by bi- 
secting EO at K and making KF and KF' = KO. OFE 
will then be a right angle and FE a tangent to the 
unit circle at F.) The circular arc FF' is the Lagran- 
gian parallel 4 and its intersection P with the me- 
ridian A is the endpoint of the vector OP=p. Extend 
OP to 3P so that 0(3P)=3 OP. At 3P construct the 
angle 0(3P)(2U)= 2 L NOP. The inclination of line 
(3P)(2U) will then be 3 times that of OP as called for 
in  eq (25). The length of (3P)(2U) is OP3 which can 
be constructed graphically as indicated in figure 3 by 
making OG= OP. drawing AG. then GH I AG and 
HI 1 HG. 01 is then = OPJ. as folliiws from the con- 

in  these con- OA OG OH tinued proportion - = - = - OG OH 01 
gruent right triangles. 

To prove that the construction of the point P is i n  
accordance with stereographic construction with 

A 
2 the transformed longitude - and a latitude 4* such 

that sin 4*=tan -, note that LNCO is - because 

its complement in rt. LNCO. the LCNO=- (arc 

1 A 
SBN-arc BN)=- (r-A)=9O0--. For the latitude 2 2 

4 construction, LOEA'=-, since it is measured . 2 
by half the difference between arc SA'=9O0 and 

4 ND = 90" - 4. In rt LEOA', therefore, OE = cot i-j 

4 A 
2 2 

1 
2 

OF' 1 - and in rt LEOF', sin LEOF'=--=-- 
4 cot - 2 

OE 

4 .  tan -. But LOEF' = LF'OA is the latitude angle 
2 

i n  the construction of the stereographic projection. 
4 Hence sin 4*= tan -- 2 
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11. THE OBLIQUE PROJECTION 

Figure 5 is an illustration of the epicycloidal 
projection in a skewed position. This is one of sev- 
eral such designs prograninied for computation and 
recorded on a CDC 6600 computer equipped with 
an FR-80 microfilm recorder by Robert H. Hanson 
of the Geodetic R&D Laboratory. To incorporate 
the drawing of tlie grid with the outlines of the con- 
tinents, he found i t  convenient t o  work in  Cartesian 
space cimrdinates X, Y,  Z on the unit sphere, in- 
stead of directly in  terms of latitude and longitude. 
by means of the elementary transformation 

x =  cos4 cos A 

15 

Y = cos 4 sin A 
Z = sin 4 

To effect the required skew. lie then rotates tliv 
sphere, iir equivalently, the (vmrdinate axes wit3 
an orthogonal transformation niatrix and uses tlw 
rotated X'Y'Z' coordinates in  the projection formula. 
This method is equivalent to tlir more conventionel 
method of computing latitudes and longitudes 4'. A' 
with reference t o  a new set of poles. Another  output 
of this set of prc.)granis is tlie iippended table 1 of 
x ,  y ccwrdinates for the ordinary 1.agrange and two-  
cusped epicycloidal projections t o  rt.pIacc: the less 
precise lists in  Deetz and Adams I 1945). pp. 219-220. 



TABLE 1. -Plane (x , y) ccicmlinates for tlie Ordinary Lagrange ( i t= 2) and tlie August two-cusped epicycluidal 
project ions. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0  DEGREES EAST LONGITUDE o o o o o o o o o o o o o o o o o o o o o o o o o  

0 0  
10 
20 
30  
4 0  
50 
60 
70 
00 
90 

0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0  o043t32R36135479 
0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0  008985963224379 
O.OOOOOOOOOOOO00 o136459737hh161 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  olAa447R@261589 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0  024742760426751 
0 .000000000000O0 .317837?4519578 
0 . 0 0 0 0 0 0 0 0 0 0 0 0 @ ~  .40853693414747 
0.00000000000000 .54346613670461 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 .c000000000000  
- .0000000000000 
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
- . 0 0 0 0 0 0 0 0 0 0 0 0 0  
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
- 0 0 0 0 0 0 0 0 9 0 0 0 0 0  
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
-.0000000000000 
0 . 0 0 0 0 0 0 0 0 0 0 0 0 0  

0.0000000000000 
.0657004465790 
.13.?9395290906 
.2034338010256 
0 279 3256863653 
.363567595554R 
.460701@267857 
.5787175046446 
.7349413646192 

100000000000000 

(OEC) X 

0 0  
1 0  
20 
3 0  
40 
so 
60 
7 0  
90 
9 0  

.C!43660942908Sl 

.04357691392974 

.04331554262076 

.04284hZRO82494 

.04210757856025 

.040983218H041d 

.@3h36225h30920 

.03074513372043 
0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 9  

. 0 ~ 2 4 n 3 4 a 9 7 0 7  

. o . . . . . . o o . o o . o o o . . .  0 . 0 . .  

LATITUDE 
(DEG) 

0 0  
10 
20 
30 
4 0  
50  
60 
70 

90 
ao 

Y x x  Y Y  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
.04391174959618 
.0090276R340232 
.13h72503283094 

.24787034280421 

.3183RlR1952471 

.40919553663951 

.54419573592507 
1 . 9 0 0 0 0 0 0 0 0 0 0 0 0 0  

. 1 9 a 7 9 4 3 3 5 ~ ~ 3 4  

.0655330293088 

.Oh52H0705791h 

.Ob44989751915 

.@431073144160 

.0609474175613 

.0577322509867 

.OS29274626373 
0045435072032R 
.0324776924234 

0.0000000000000 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
.0659503673157 
.13343926702RR 
02041860990060 
.2803289R92R34 
.364R 15467 154 1 
.4621714R53410 
.5803343102789 
.7364839555933 

1.0000000000000 

20 DEGQEFS EAST LONGITUDE ~ o o o o o o ~ ~ ~ o o o o o o o o ~ o ~ o o o ~  

.0!3748866352592 

.08731932946244 

.03679260444044 

.08584703784233 

.08435879257176 

.@8209410177441 

.0785R974515883 

.07279359796932 

.0615093!5466894 
0000000003000000 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
.04416318595831 
.08953437626802 
.13749471308806 
.lH9Y387103h844 
.24920470435319 
.32002240249376 
.41113875344259 
.54639072974151 

1.00000000000000 

.1315678760509 

.1310564112209 

.1294721421623 

.1266525096950 

.122278063blQO 

.1157703537455 

.1060542263605 

.0909262533453 

.0648356240918 
0 .0000000090000  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
.066706R054487 
.1349543503124 
.?064623!599210 
.2833637454670 
.3685881293695 
.4666112R82013 
.5852275748492 
.7411263999782 

1.0000000000000 
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TABLE 1. -Plane (x, y )  coordinates for the Ordinary Lagrange 0 8  = 2) arid the August two-cusped epicycloidal 
projections. - Continued 

. ~ ~ o o ~ ~ o ~ ~ ~ ~ ~ o ~ ~ o ~ ~ o o o o o o  30 DECQEES EAST LONGITUDE o o o o o o o o o o ~ o o ~ o o o ~ o o . . . . ~  

00 
10 
20 
30 

50 
60 
79 
5 0  

40 

90 

.13165249758739 

.13139522R27Q46 

.130SQ509209598 

.12915893043532 
,126H9906585999 
.12346167184193 

.10936300R63740 

.09229573450114 

.iiai~h02960479 

0o00000000030000 

0.00000000000000 
.04456652670083 
.0903974110~214 
.13R79079179590 
.191595?0204703 
..?51k493@1814!50 
.32275095559281 
.41441901H5~YYB 
.55306977414924 

1 .0 0 0 0 0 0 0 0 0 0 0 0 r! 0 

.1986196719471 

.19783528004A8 

.1954050727446 

.1910837497682 
,1843828236493 

.1595795Q69415 

.I744243369402 

.13652504147P3 

.09694hA965123 
0.000G000000000 

0.0000000000000 
-0679901 318RS5 
.1375242357875 
.2103216362350 
.2885055581922 
.3749739727240 
.474114P550309 
.593&765631755 
.7489141533948 

1.0000000000000 

00 
1 0  
ZC) 
30 
4 0  
50 
60 
70 
40 
90 

0.0000006@000000 
.0451RR73QOh124 
.0915999Q774040 
.143h3131465997 
.1940q?~50753A6 
.25463574H51896 
.3266930?&04503 
.41?96423740542 
.55525419652250 

1.00000000000000 

.2672315A01377 

.Zhh152478101A 

.262A112056361 

.%568702069793 

.2476681407827 
,2340125854580 
.2137023609069 
.I822730485035 
.1286700348749 

0 . @ ~ 0 0 0 0 3 0 0 0 0 0 0  

0.0000000000000 
.06GR35~71992k 
.1412192269729 
.215A655945490 
.295884~542?82 
.3841245569978 
.484R420704761 
.hOS224136114Q 
.7599221464761 
1.0000000000000 

00  
10 
20 
30 
40 
50 
60 
70 
a0 
90 

.?21694%2b42W 

.2212479154OR33 

.21995993152440 

.21736695R69547 

.21344915531340 

.%074QYOH?R53bh 

.19H31432136O?Y 

.1831Q05708631~ 

.153Q~0709931RS 
0 .  r) 0 0 0 0 0 0 0 9 0 0 0 G 0 

@ . 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
.04597811977664 

.1430460A773133 

.19736533789643 

.25RPOY57530130 

.331RllO3169363 

.42512859321697 

.56201827RO1347 
1.00000000000000 

.0931907~mii4 

.3379H997662h4 

.3365854139728 

.32451370015R4 

.3125644106160 

.2948660081857 

.2686200093439 

.2281964477139 

.1598409*0479@ 
0.0000000300000 

03327379515032 

0.0000000000000 
.0722945686745 
.14613R4924715 
.22324 3651 6694 
.3056921209032 
.3962612659834 
.4990250691330 
.620675&248049 
.7742549230596 
1.0000000000000 
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00 
10 
20 
30 
40 
50 
60 

80 
90 

70 

.26794919243112 0.00000000000000 

.25739760359025 .04596861938767 

.265682A38237aR .09518550526013 

.26260776559497 .14607250&27079 

.25777636804098 .20146416063600 

.2391&631173810 .33820395745152 

.220584S4411615 .43268369896480 

.IWAR92796012h '.570389R1063770 

*25044442000107 .26403157512379 

0 ~ 0 0 0 0 0 0 @ 0 0 9 0 0 @ 0  1m00000009000900 

.4115427318R01 

.4097712282032 

.39&5617744942 
m4042904423090 

a3795351332772 
m3573321436791 
m3745269506811 
e2742982031290 
m1902639125889 

0m9000000000000 

0~0000000000000 
.0754386094752 
.1524253959997 
.2326607307963 
m318188280776R 
06116852333766 
e5169770404110 
m6401030567305 
m7920451424577 

1~0000000000000 

00 
10 
20 
30 
40 
50 
60 
70 
80 
90 

o31529878RA789R 0~00000000000000 
.31463303939372 . 0 4 ~ 1 7 6 2 ~ 4 ~ 3 0 3 s  
..31256392529492 .097616R3752169 
.30885403131342 .I4975937292353 

.2942054932405P .27037964098437 

.280678847742Oi3 .36596009992563 
,25839740660355 .44192013160616 
.?15834137531~9 .580459'i6955727, 

0.09000000c0000~ 1,00000000090000 

.30303197604739 o2064532h552155 

.4886206340039 

.4864275692920 

.4796462252655 

.4676228460675 

.471779OR032?6 
,3816113675493 
.320548823336R 
.219701401299i! 

0 . ~ 0 0 @ 0 0 0 0 0 0 0 0 0  

04490871 0241 30 

0.0000000000000 
.079362?603312 
.1602653416201 
m2443882RO8062 
3337 174272591 

.4307912134027 

.5391043062753 
m5638539949655 
.8134529613312 

1.0000000000000 

c o  
10 
20 
30 
40 
50 
40 
70 
80 
9') 

,36397023426620 
.36317855538257 
.34071R99287965 
.35631256197661 
.3494099435799@ 
.33993fi9832790% 
.3229q078150779 
.?9664343420305 
.2468124045407C 

o.oooooo0ocooooc 

0.09000000000000 
.049hZlR6h78334 
1 0 0 526 1 0 0 1 '7506 

.15~15811127304 

.212&133Q067744 

.27795118929555 

.35519915@40694 

.45264938871739 

.59229702h33657 
1 . 0 9 c 0 ~ 0 0 0 0 3 0 0 0 0  

.570@637081220 

.567377997453& 

.5590786739216 

.5443@41703735 

.SZ1781927006R 

.4885990239406 

.~400500171350 

.3668739560154 

.247R621376253 
3 .000030c000000  

0.0000000000000 
.0841892Q97173 
.1699016287497 
.2587795090177 
.3527250787526 
.4540663618R46 
.5659222927377 
.69235@0331199 
.838662279044R 

1.0009000000000 

18 



TABLE 1. -Plane (x, y) coordinates for the Ordinary Lagrange (n= 2) arid the August two-cusped epicycloidal 
projections. -Continued 

0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 ~ 0 ~ 0  90 DECQEES EAST LONGITUDE 0 ~ . 0 ~ 0 0 0 0 ~ 0 ~ . . 0 0 0 0 0 0 ~ o ~ o o  

00 
10 
20 
30 
4 0  
50 
60 
70 
RO 
90 

.414213562373Oq 

.41039h94810823 

.GO520447463426 

.39739432531229 

.384813?4709252 

.36602540378444 

.33547371034843 

.27779402406123 
0 .n0000000000000  

.4132916902520b 
0.00000000000000 

.05133120166092 

.1039h43892263d 

.159374Q8068339 

.219443349358R5 

.28686629407625 

.36602540378443 

.46530631735255 

.60600138984498 
1.00000000000000 

.6569542694924 

.6535837@78579 

.6434P49RSR43S 

.625633594 11 73 

.5982491897340 

.55821094?%675 

.500000000000C 

.4131380051275 

.2743872918761 
0.0900000000000 

0.0000000000000 
.0900803647951 
.18164937!58612 
.2'7 0 29 0 2 045 29 4 
.3757827629774 
.4522152744733 
.5980?62113533 
.726137929203R 
.8678767561416 

1.0000000000000 

0 0  
10 
20 
30 
40 
50 
60 
70 
90 
9 0  

.46639765815499 

.4h5217598592hb 

.46193273963494 

.45577740997909 

.4463015355529h 

.43200922628604 

.6101Q05932704Q 

.374R76914493&3 

.30875218572006 
0.00009000000009 

0.00000000000000 
00533362*627914 
. lo799409999772 
.16547399166545 

.;?9727 1699A.3052 

.37963159384175 

.479952073669b9 

.67171OR6325342 
1 . 0 0 0 0 0 0 9 0 0 0 U ~ 0 0  

.22766649204817 

.7501591161313 

.7461941735525 

.7339214987044 

.7122862276131 

.6792015295920 

.5615860R44502 

.&591222929345 

.2988342503665 
0 .0000000000000  

. b310h1922~960  

0 . 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 9'1 Z 4 334 39 2 2 9 

.19S9150101~70 

.2975071373716 

.4036211757368 

.515993135951R 

.765R2 10346732 
0901312h94331R 

1.0000000000000 

06363676922104 

0 0  
10 
Z Q  
30 
4 0  
5 0  
60 
70 
90 
90 

.52054705055174 

.51929675937561 

.51535390944020 

.6972946129483H 

.450722471638R3 

.45550979010592 

.61491590961946 

.33967120546799 
0.000000000COOOQ 

.53a30663*55411 

0 .00000000000000 
.05567642R91394 
.11269956Z47549 
.17258067909R55 
.23723236401769 
.30934593h46079 
.393203R0520!550 
.495777h7906717 
.63955119255002 

1.00900000000000 

.P513848224297 

.H46S4966Sh709 

.83164t?9562969 

.P0561?R000692 

.765451Rh93202 

.707h25730322R 

.h24~815250717  

.5044957505804 

.3206579466957 
0.0000000000000 

0.0000000000000 
.lOS949h694155 
o2132295112137 
.323186?0307RO 
.6371749557997 
.556449517894Q 
.681797260632n 
*8121520365556 
.93S1882R17147 

1.0000000000000 

19 



0 0  
10 
20 
30 
40 
50 
60 
70 
80 
90 

.57735026918961 

.571297855530!v 

.56310196R9410h 

.55033247757727 

.53115525700269 

.50211797591007 

.45563996661702 

.37036374337606 
0 . 0 9 0 0 ~ 0 0 0 0 0 0 0 0 0  

. 57sm4a647246  
0 .00000000000000  

.11916848991309 

.180837014h7352 

.24932429598726 

.32330583280214 
. .40Q97761055292 

.51600824224177 

.65967528700761 
1 - 0  0 9 0 0 G 0 0 0 0 0 0 0 0 

. O S ~ ~ O O ~ ~ O H S R S ~  
.W22504486493 
.95fi3506589009 
.9381913219514 
.5063043544~41 
.R579378272773 
.7ti83Q70502553 
.6898793537819 
.5487760247330 
.33918927300?7 

0 .0000000000000  

0.0000000000000 
.1165519611074 
.2 34 2 776348Q2 1 
.3543093927729 

.6048852983392 

.7355584076616 

.8560060113052 

.9817077917952 
1.0000000000000 

047764 34397997 

......................... 130  D E W E F S  EAST LONGITUDF: ......................... 

00 
10 
20 
30 
40 
50 
50 
70 

90 
ao 

.e~7070260ao74f i  

.63535116151572 

.63002092132716 

.6205151800922Ii 

.40571599565030 

.59356872330097 

.55015665265823 

.&970707247837t! 

.40085642234277 
0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

O.OOOOOOOOCOG0OO 
.Oh156847485269 
.12452500R99256 
.19041793088276 
.26116693P89024 
.339414Q2291462 
.42Q23552613566 
,5379079134389'5 
.6822539978h6!51 

1.00050000000000 

uQUQ409QQou N ~ p ~ l i  

x x  

1.094R855R69147 
1.0774505762620 
1.0554132297103 
1.0164852262499 

.'Xi77180079317 

.873R781645701 

.7564495991728 

.5912766957561 

.353hllOR4087R 
0 . 0 0 0 0 0 0 0 0 0 0 0 0 0  

010 *o********* 
Y Y  

0.0000000000000 
.1295161399A49 
.2599629294083 
.3921520331094 
.5265733929173 
.6629543544720 

.92U4002786318 
1.0290353046724 
1.0000000000000 

. 7 ~ 9 i a e o m 4 8 5  

00 
10 
20 
30 
40 
50 
60 
70 
90 
90 

.70020753820970 

.6982049143815b 

.69199970153061 

.49094902139970 

.6637~387456850 

.5381R491103281 

.59976h14997079 

.53921672G58434 

.4309R630627472 
0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

O ~ G 0 0 0 0 0 0 0 0 0 0 0 0 0  
.06525553636938 
01319159P131023 
0201539?7798420 
.2760359092b753 

.45131642240192 

.Si5278562172427 

.70747327163858 
1.00900000000000 

035799357002951 

I .2219638931289 
1.213C316309007 
lolF!56231941797 
1.1378104291009 
l.Oh60440589A41 

.9b45532&63878 

.t3242765914a02 

.6310376991a05 

.3629322552R73 
9.0000000000000 

o i o o o o o o o o o o o o o  
.1454615083R42 

.4383939439214 

.585973344457 1 

.A745320318767 
1.00050237G2529 

1.0000000000000 

.2914ao9224535 

.7327556565805 

1o0~12770f391406 

20 



0 0  
10 
20 
3 0  
40 
50  
60 
70 
8 0  
90 

.76732698797895 

.76498779144456 

.7S774530532219 

.74486834633001 

.72491950985350 

.69529R52900531 

.6510947396259F 
,58205896484134 

0.0406060000000f l  
. 4 4 0 5 9 4 ? 7 2 R 8 1 0 1  

0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
.06955542442012 
o14052603h74422 
m21447065129460 
a29327207461349 
m37943360?31861 
.47662710943896 
S910O 16OW34Zl 
.7355~1425hh919 

1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

1.3768879816454 
1.3657680655733 
1 . 3 3 1 7 1 2 8 4 0 ~ 6 0 1  
1.272546730592Q 
1.1843310027809 
1.0608422238016 

.B92764!5086570 
06667322266581 
.3 f iSQbI 3836645 

o . o o o c o o o n o o o o o  

0 . 0 0 0 0 0 0 0 0 0 0 0 0 0  
. I652212946036 
.33043195A5755 
.4952338032231 
. 6 s 8 4 7 1 5 ~ 7 0 6 5 1  . R 1 6 9 7 Q 0 9 6 9.3 3 9 
.Q6387361697?0 

1,0836295273308 
1 . 1 3 3 4 0 4 q 4 3 3 7 0 4  
1.ononooconoooo 

0 0  
10 
20  
30  
4 0  
50  
6 0  
70 
99 
QO 

.939OQQ43117727 

.R3635441052379  

.R27R715163513E 

. ~ 1 2 8 1 3 ~ 7 6 4 0 2 9 5  

.79955Aq9326227 

.7!5517797474199 

.7 0 4 24 2454 348 0.3 

.h2S5419118&14b 

.48947714364351 
o.cooo@o3Ooooooo 

0 . 0 6 0 0 0 0 0 0 0 0 0 0 0 0  
.07459651G69730 
. I5058745940367 
.229546441746Ab 
..3132981@3H9996 
.4042149*541515 
.SO565667619457 
.62297470512240 
.76567859766766 

l . G G O O 9 O O O O O O O G O  

0 . 0 0 0 0 0 0 0 0 0 0 0 0 0  
.1899317521480  
.37L!9962544992 
.5657525126940 
. 7475  3 7 7 3 3  1536 
.9190H20341336 

1 . 0 7 0 0 1 5 ~ 5 3 5 0 9 5  
I 1 7 ~ z . 1 ~ 1 1 0 ~ 1 ~ 5  
1.2007229054137 
1 . (I 0 0 0 0 9 0 9 0 0 0 0 0 

00  
10 
20 
30 
4 0  
50 
60 
70  
A0 
90 

.91637117401742 

.903109178bd611 

.A9541935800008 

.85819954677908 

.Y1817510432653 

.7593522614399!5 

.5695$995833370 

.517379&4660932 
0.9 0 0 0 !I 0 0 0 0 0 0 0 0 Ij 

. ~ 1 3 0 9 ~ 0 7 2 6 s s ~  
lm759201370O59O 
1 .741~1880495RS 
1.6fi72263Wk!Y017 
1.5940446P45825 
1.4574469220740 
1.2710875065467 
1.0270511618HZY 

.718007H41240? 

. 3 4 7 2 4 1 2 1 ~ 3 8 h I  
0 r, o 0 0 0 0 0 0 0 0 0 0 (1 

0 . 0 0 0 0 0 0 ~ 0 0 0 0 0 0  
.2211b3OQ39974 
044012b47732S0 
,6539234309865 
.R577969220RRh 

1,0435326314376 
lo19h3R7i?h17454 
l028l?94HSh34923 
l o 2 ~ h 2 b 7 6 6 5 C 4 1 5  
1.0000000000000 

21 



TABLE 1. -Plane (x ,  y )  cc.ic.1rdinates fw the Ordinary Lagrange (n= 2) and the August two-cusped epicycldal  
pr1.1jectic.1ns. - Continued 
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